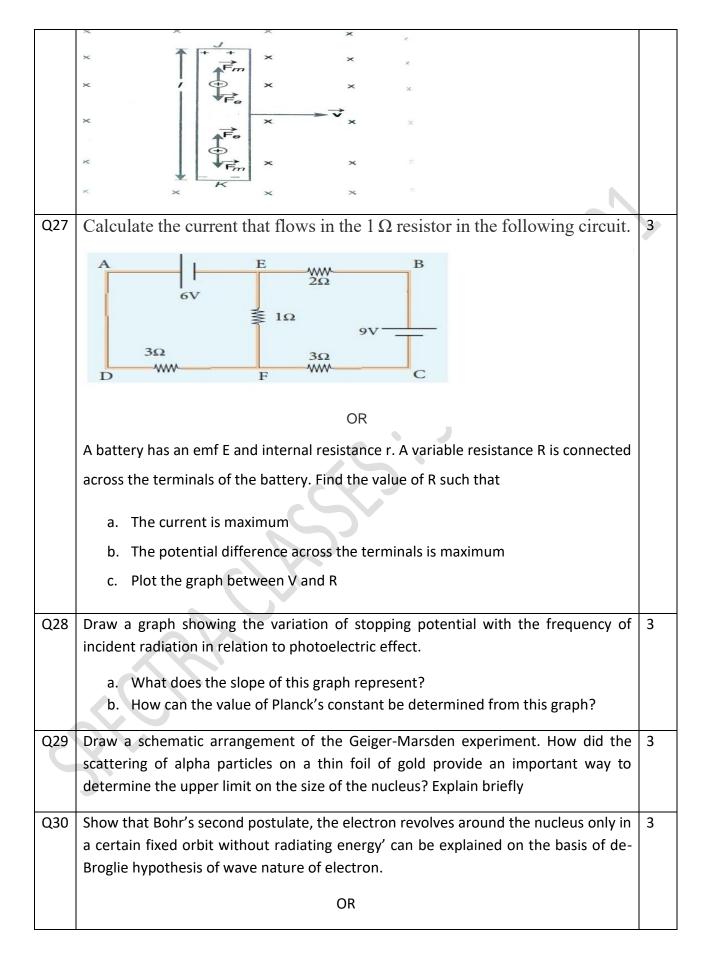

	SPECTRA CLASSES	
	CLASS: XII	
	SUBJECT: PHYSICS	
	M.M. 70 TIME: 3 HRS	
	General Instructions:	
	(1) All questions are compulsory. There are 33 questions in all.	
	(2) This question paper has five sections: Section A, Section B, Section C,	
	Section Dand Section E.	
	(3) Section A contains ten very short answer questions and four assertion	
	reasoning MCQs of 1 mark each, Section B has two case-based questions	
	of 4 marks each, Section C contains nine short answer questions of 2	
	marks each, Section D contains five short answer questions of 3 marks	
	each and Section E contains three long answer questions of 5 marks each.	
	(4) There is no overall choice. However internal choice is provided. You	
	must attempt only one of the choices in such questions.	
	Section – A	
Q1	Electric field lines provide information about:	1
	(a) field strength (b) direction (c) nature of charge (d) all of these	
Q2	In a Wheatstone bridge if the battery and galvanometer are interchanged then the	1
	deflection in galvanometer will :	
	(a) change in previous direction (b) not change	
	(c) change in opposite direction (d) none of these.	
Q3	What is the value of the angle of dip at the magnetic equator?	1
	(a) 45 degree (b) 0 degree (c) 90 degree (d) 60 degree	
Q4	In a pure capacitive circuit if the frequency of ac source is doubled, then its	1
	capacitive reactance will be: (a) remains same (b) doubled (c) halved (d) zero	
Q5	The S.I. unit of capacitance is:	1
	(a) J/C (b) Farad (c) J^2/C (d) C/J	
Q6	The magnetic flux linked with the coil (in weber) is given by the equation:	1
	$\left(\phi=5t^2+3t+16\right)$	
	The induced EMF in the coil at time, t=4 will be:	
	(a) -27 V (b) -43 V (c) - 108 V (d) 210 V	
Q7	A circular coil of 25 turns and radius 12 cm is placed in a uniform magnetic field of 0.5	1
	T normal to the plane of the coil. If the current in the coil is 6 A, then total torque	
	acting on the coil is:	


	(a) zero	(b) 3.4 N-m (c) 3.8 N-m (d) 4.4 N-m	
Q8	uniform magne	bop of side 6cm and 2cm with a small cut is moving out of a region of tic field of magnitude 0.4 T directed normal to the loop. The voltage ss the cut if velocity of loop is 2cm s ⁻¹ in a direction normal to the (b) 4.8×10^{-4} V (c) 2.2×10^{-2} V (d) 3.2×10^{-2} V	1
Q9	In single slit diff (a) central fring	raction pattern: e has negligible width than others re of same width es do not exist	1
Q10		series of hydrogen lie in UV region?	1
	(a)Paschen serie	es (b) Lyman series(c) Brackett series (d) Balmer series	
	Assertion (A) a questions from	numbers 11, 12, 13 and 14, two statements are given-one labelled and the other labelled Reason (R). Select the correct answer to these in the codes (a), (b), (c) and (d) as given below. d R are true and R is the correct explanation of A.	
	b) Both A an	d R are true but R is NOT the correct explanation of A.	
	c) A is true b	out R is false.	
	,	and R is also false.	
Q11	Assertion(A):	Gauss's law of magnetism is different from that for electrostatics.	1
	Reason(R):	Isolated magnetic poles are not known to exist.	
Q12	Assertion(A):	Magnetic charge Interacts with the moving charge and not with a stationary charge.	1
	Reason(R):	A moving charge produces a magnetic field	
Q13	Assertion (A):	If optical density of a substance is more than that of water then the mass density of a substance can be less than water.	1
	Reason(R):	Optical density and mass density are not related.	
Q14	Assertion(A):	The resistivity of a semiconductor increases with temperature.	1
	Reason (R):	The atoms of a semiconductor vibrate with larger amplitudes at	
		higher temperatures thereby increasing its resistivity.	
		Section – B	
		nd 16 are Case Study based questions and are compulsory. Attempt from each question. Each question carries 1 mark.	

Page 3 of 8 Centre: Gole Market & Minto Road, New Delhi. M: 9650618171, 9013160531, 9899349601 Web: www.spectraclasses.com, E-Mail: info@spectraclasses.com

	a) ray of light must pass through rarer medium to denser mediumb) ray of light must pass through denser to rarer medium	
	c) there must be no change in medium of lightd) none of the above	
	iii. The phenomenon occurs generally and observed	
	a) during winters in open fields	
	b) hot summer days in deserts	
	c) rainy season	
	d) during night at poles iv. In the above phenomenon, angle of incidence and angle of refraction	
	iv. In the above phenomenon, angle of incidence and angle of refraction	
	a) are equal	
	b) angle of incidence is greater than angle of refraction	
	c) angle of incidence is smaller than angle of refractiond) none of the above	
	v. The application of above phenomenon is in	
	a) transmission of highspeed data	
	b) formation of real imagec) to obtain coherent light	
	d) all of the above	
	Section – C	
Q17	A proton and an alpha particle of the same velocity enter in turn a region of uniform	2
	magnetic field, acting perpendicular to their direction of motion. Deduce the ratio	2
	of the radii of circular paths describe by them.	
Q18	Draw the diagrams to show the behaviour of plane wave fronts as they pass	2
	through: (a) thin prism (B) thin convex lens	
	OR	
	State two conditions for sustained Interference.	
Q19	Prove that two identical cells each of emf E, internal resistance r will send same	2
	current in an external resistance R whether all cells are connected in series or in	
C	parallel, if R=r	
Q20	With the help of a suitable diagram, explain the formation of depletion region in a	2
	p-n junction. How does its width change when the junction is:	
	(i) forward biased (ii) reverse biased	

Q21	In the figure A and B are identical magnets. Magnet A is moved away from the coil with a given speed. Magnet B is moved towards the coil with the same speed. What is the induced emf in the coil?	2
	OR	
	Define Mutual Inductance. How does the Mutual Inductance between two coils be affected when: (I) Separation between the coils increases. (II) Number of turns increases.	
	(i) separation between the constine cases. (ii) Namber of tarits increases.	
Q22	How the angular separation of interference fringes in Young's double slit experiment change when the distance between the slits and screen is halved?	2
Q23	Differentiate conductors and semiconductors on the basis of energy band diagrams.	2
Q24	Define angle of dip and angle of declination of a magnetic compass	2
	OR	
	Derive an expression for magnetic field intensity due to circular loop at its centre.	
Q25	What are the merits of reflecting telescope over the refracting telescope?	2
	Draw a ray diagram to show image formation for a (Cassegrain) reflecting telescope. What is the magnifying power?	
	SECTION- D	
Q26	A rod of length L is moved horizontally with a uniform velocity v in a direction perpendicular to its length through a region in which a uniform magnetic field is acting vertically downward. Derive the expression for the emf induced across ends of the rod. If the resistance of the rod is R, then also find the expression for the current induced.	

Page 6 of 8 Centre: Gole Market & Minto Road, New Delhi. M: 9650618171, 9013160531, 9899349601 Web: www.spectraclasses.com, E-Mail: info@spectraclasses.com

		Bohr's Postulates. Using it find Out an Expression for Energy of electron in nth or H atom.	
		SECTION- E	
Q31	(a) (b)	Define resistivity and explain how the resistivity of a conductor depends upon the temperature? Derive the condition for the balanced Wheatstone bridge. How this is utilised in meter bridge to determine the resistivity of the material of the wire.	5
	(a) (b)	OR Define an ideal electric dipole. Give an example. An electric dipole of length 2cm is placed with its axis making an angle of 60° with respect to uniform electric field of 10^{5} N/C. If it experiences a torque of 8v3 Nm, calculate the magnitude of charge on the dipole, and its potential energy.	
Q32	(i) (ii)	Derive an expression for torque on a current carrying loop in a magnetic field. Name the device that works on this concept. For what orientation of the coil is this torque (a) maximum and (b) minimum? Hence define magnetic dipole moment of the coil. Two wires of equal lengths are bent into the form of two loops. One of the loops is square shaped whereas the other loop is circular. These are suspended in a uniform magnetic field and the same current is passed through them. Which loop will experience greater torque? Justify your answer.	5
C	(i) (ii)	OR On a smooth plane inclined at 30 ⁰ with the horizontal, a thin current carrying metallic rod is placed parallel to the horizontal ground. The plane is in a uniform magnetic field of 0.15 T in the vertical direction. For what value of current can the rod remain stationary? The mass per unit length of rod is 0.03 kg/m. A long wire carries a steady current I. It is at first bent into a circular loop and magnetic field at its centre is found to be B ₀ . Then the same wire is bent into a circular coil of n turns. Find the magnetic field at the centre point now.	

Q33	A ray of light goes from medium 1 to medium 2. Velocity of light in the two media	5
	are c_1 and c_2 , respectively. For an angle of incidence, θ in medium 1. The	
	corresponding angle of refraction in medium 2 is $\theta/2$.	
	(a) Which of the two media is optically denser and why?	
	(b) Establish the relationship among θ , c_1 and c_2 .	
	(c) The critical angle of incidence in a glass slab placed in air is 45 ⁰ . What will be	
	the critical angle when it is immersed in water of refractive index 1.33?	
	OR	
	State Huygen's principle. Using this principle, draw a diagram to show how a plane	
	wavefront incident at the interface of two media gets refracted when it propagates	
	from a rarer to a denser medium. Hence, verify Snell's law of refraction.	
	Is the frequency of reflected and refracted light same as the frequency of incident light?	

Page 8 of 8 Centre: Gole Market & Minto Road, New Delhi. M: 9650618171, 9013160531, 9899349601 Web: www.spectraclasses.com, E-Mail: info@spectraclasses.com